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Acoustic behaviour of a liquid/vapour mixture in a 
standing-wave tube 
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(Received 21 October 1991 and in revised form 23 March 1992) 

We study the acoustic behaviour of a mixture of diethyl-ether bubbles and liquid, a t  
small volume fraction of vapour, contained in a standing-wave tube. We give 
experimental evidence of the effect of t,he liquid/vapour phase transition on the 
positions and amplitudes of the resonances of the tube. The effective-medium theory, 
which properly describes the behaviour of liquidlgas mixtures, is shown to be 
inadequate. We find that theoretical studies which take the effect of the phase 
transition into account do agree with our experimental data. 

1. Introduction 
Sound propagatlion in liquid/gas mixtures is well documented both theoretically 

and experimentally ; Commander & Prosperetti (1989) give an extensive review of 
experimental works with a heuristic exposition of the corresponding models, and the 
reader is referred to their review €or references to the original studies. 

At low acoustic frequency diphasic media are described with a good accuracy by 
the effective-medium theory (EMT) which considers that the liquidlgas mixture has an 
eEective compressibility and an effective density which are the averages of the 
respective quantities in the two phases. Even at  small gas volume fraction, this 
model predicts a very low speed of sound: in fact the density of'the mixture is almost 
that  of the liquid and its compressibility that of the gas, and the sound speed ceff in 
the mixture is thus lower than both the speed in the pure liquid c1 and in the pure 
gas cg (for example, in diethyl-ether c1 - 1000 m/s, cg - 200 m/s  and ceff N 100 m/s 
a t  a volumic fraction of 0.35 YO). 

The sound attenuation can be accounted for by considering the individual response 
of each bubble to the incident sound wave. A bubble response to  the sound wave is 
that  of a forced harmonic oscillator, the stiffness term being provided by the gas 
compressibility and the inertia term by the liquid density; the oscillations are 
damped by the surrounding liquid viscosity, by the gas thermal conduction and by 
the scatteringt of sound, and this damping causes the attenuation of the sound wave. 

When handling a liquid/vapour mixture instead of' a liquidlgas one, one expects 
the effective compressibility of the mixture to be modified: the possibility of a phase 
transition allows a change in the volume of the bubbles due to the cond- 
ensation/vapourization and not only to the compression of the vapour by the sound 
wave. The latent heat necessary for the phase transition should be transported by 
heat diffusion and this diffusive phenomenon is mainly responsible for the 
attentuation of the wave. 

The first theoretica! study including effects specific of liquid/vapour mixtures is 
f Note that this is not, strictly speaking, a dissipative phenomenon but it removes energy from 

the incident direction of propagation and actually damps the sound wave. 
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that of Landau & Lifshitz (1959) ; they assumed thermodynamical liquid/vapour 
equilibrium everywhere in the mixture and their result is thus strictly valid only atJ 
zero frequency (see also Kieffer 1977). Later studies of Trammel (1962) and 
Nakoriakov et al. (1984) gave analytical expressions for the phase velocity and the 
attenuation for frequencies of the order of the bubble resonance frequency, but they 
failed to  recover Landau & Lifshitz’s result in the limit of zero frequency. Onuki 
(1991) solved this discrepancy using an effective-medium theory that incorporates 
the effect of the phase transition on the effective compressibility of the mixture; we 
call his model the modi$ed eflective-medium theory (MEMT). He recovered the results 
obtained by Trammel and Nakoriakov et al. in the high-frequency limit and Landau 
& Lifshitz’s formula valid a t  zero frequency; moreover he showed that the crossover 
takes place when thermal interactions between the bubbles cannot be neglected. The 
main features of his model are in agreement with the rigorous result, valid at, all 
frequencies, obtained by Boguslavskii (1978) for a solvable one-dimensional model. 
We should also mention the work by Mecredy & Hamilton (1972) and by Feldman, 
Nydick & Kokernak (1972) who failed to  give an  answer in closed form because they 
introduced an unknown phenomenological coefficient ; Ardron & Duffey (1978) gave 
a numerical answer to the problem, in good agreement with the later results obtained 
by Onuki and by Nakoriakov et al. ; lastly we mention the calculations of sound 
attenuation in liquid/vapour mixtures by Wang (1974) and Hsieh (1982), based on 
studies of vapour bubble oscillations by Finch & Neppiras (1973), Hsieh (1979) and 
Marston (1979). 

To our knowledge only a few experimental studies have been carried out. Feldman 
et al. (1972) and Kokernak & Feldman (1972) give only qualitative results, and at  
frequencies too high for the phase transition to have any effect. Although our 
measurements were made at much lower frequencies, this is also the main defect of 
a previous work (Coste, Laroche & Fauve 1990). I n  the work by Mecredy, Wigdortz 
& Hamilton (1970), graphic representations of the phase velocity for a liquid/vapour 
and for a liquid/gas mixture are given but the measurements were carried only on 
a liquid/gas mixture (bubbles of nitrogen in water). As far as we know, all the works 
by Soviet scientists deal with nonlinear wave8, and do not study the possible 
deficiency of the EMT for liquid/vapour mixtures in the linear regime (see 
Nakoriakov, Pokusaev & Shreiber 1980; Borisov et al. 1983; Kutateladze, 
Nakoriakov & Borisov 1987 and Nigmatulin, Khabeev & Zuong Ngok Hai 1988; see 
also the book by Nigmatulin 1991). 

The organization of this paper is as follows : first we briefly summarize the results 
of the two theoretical models ($2).  Then we describe our experimental set-up, the 
method of measurements for the volume fraction and the acoustic behaviour of our 
system, in order to  compare the predictions of the models with the experimental 
results ($3).  Next we describe the various measurements that  we have made, and 
show a clear discrepancy with the predictions of the EMT ; on the other hand, those 
of the MEMT do agree with our experimental results ($4). I n  the last section we 
summarize our results and extensively discuss their main limitation, that is the 
unavoidable polydispersity of the bubble population in our experiments ($5). 

2. The models 
Tn this Section, we give a brief review of the theoretical models of’ interest. 

Although the works we quote are often much more general, we restrict the hypothesis 
because of our experimental conditions : we consider only sound waves of srnall 
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Definition 
Latent heat of vapourization 
Heat capacity (liq.) 
Heat capacity (vap.) 
Density (liq.) 
Density (vap.) 
Sound velocity (liq.) 
Sound velocity (vap.) 
Surface tension 
Viscosity (liq.) 
Viscosity (vaq.) 
Thermal conductivity (liq.) 
Thermal diffusivity (liq.) 

Symbol Value 
L, 3 8 0 ~  103 
ca 
c; 
PS" 3.3 

U 17 x 10-3 
PI 2.2 x 10-4 
Pup 7.5 x 

2.26 x 103 
1.42 x 103 

p, 736 (713) 

c, 1030 
c8 187 

4 0.138 
D, 8.3 x 

Unit 
J kg-l 
J kg-l K-l 
J kg-' K-' 
kg m-3 
kg m-3 
m s-l 
m s-l 
N m-l 
kg m-' s-l 
kg m-l s-l 

mz s 
J 8 1  m-l K-1 

Temperature 
34.5 "C 
30 O C  

30 "C 

34.5 "C 
15 "C 
34.5 "C 
20 "C 
25 "C 
25 "C 
30 "C 
30 "C 

0 O C  (25 "C) 

TABLE 1. The numerical values of the mechanical and thermal properties of diethyl-ether used in 
the experiments, for both the liquid (liq.) and vapour (vap.) phases. The definitions are listed in the 
first column, the symbols we use in the text in the second one, the respective value and unit in the 
third and fourth ones; in the last column we quote the temperature at  which the measurements are 
done. Those values (with the exception of el, which we measured) are taken from the Handbook of 
Chemistry und Physics, The Chemical Rubber Publishing Company, Cleveland, Ohio. 

amplitude so that we are in the linear regime and of frequency much lower than the 
resonance frequency of the individual bubbles. We also neglect all effects due to 
surface tension because they are relevant only for very minute bubbles (with a radius 
typically smaller than a few pm) and we consider only the case of a smEl volume 
fraction of gas (or vapour). The last assumption we make is the following logical 
requirement for the homogenization of the mixture: the bubble sizes and the mean 
distance between them should be small compared to  the wavelength; it is always the 
case in our experiments, and could be violated only a t  very high frequency (typically 
lo6 Hz for a bubble with a 1 mm radius). 

In  our experiments, the working liquid is diethyl-ether; the mechanical and 
thermal properties required in the calculations are listed in table 1 .  

2.1. The e8ective-medium theory 
The simplest picture of a liquid/gas diphasic mixture is that of an effective medium, 
the density and compressibility of which being the averages of the respective 
quantities in the gas and liquid phases (Mallock 1910). Let f be the volume fraction 
of gas, that is 

We define the average of a quantity X by ( X )  EE (1 - f )  X ,  +fXg and we thus get the 
following expression for the sound velocity in the mixture: 

where the averaged density ( p )  and averaged compressibility (x) of the mixture are 
expressed on the right-hand side in terms of the density pi and of the sound velocity 
ci for each phase i. In  this simple model, the mixture is characterized only by the 
mean quantity f; thus a detailed statistical knowledge of the bubble population is 
unnecessary. In  turn the simple formula (2.1) fails to account for the sound wave 
attenuation. When the volume fraction of gas is not too low, so that 

Pg c 3 1  -f) -4 P1 C l " f >  
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using pl(l - f )  >> pg f and the well-known expression c i  = ypo!pg,. where p ,  is the 
ambient pressure and y the adiabatic exponent of the gas, which 1s supposed to be 
perfect, we obtain the following useful approximation : 

C t f f  x YP, / (P l f ) .  (2.2) 
To introduce dissipative phenomena it is necessary to study the individual 

behaviour of each bubble. In the linear regime, a bubble in a sound field can be 
described as a forced harmonic oscillator, the stiffness of which is related to the 
compressibility of the gas and the inertia term to the density of the liquid; its 
resonance pulsation w, is given by (Minnaert 1933) 

where R, is the equilibrium radius of the bubble. The next step is to describe the 
scattering of a sound wave by the set of bubbles; the problem has been solved by 
Cartensen & Foldy (1947) who found the (complex) propagation constant to be 

h2 1 Plf 1 - _  - 3+- 
w2 c1 'yp, 1 - (w2/w,2) -id(@) ' 

where k is the wavenumber and w the pulsation. The phase velocity cQ and the 
attenuation a4 are 

The expression (2.4) exhibits both dispersion and attenuation through the 
dimensionless damping constant 8. The dispersion is a physical consequence of the 
fact that a natural timescale (the oscillation period of a bubble) has appeared in the 
problem; another way of seeing this is to remember that attenuation and dispersion 
are related to each other by the Kramers-Kronig relations (for applications to  
bubbly diphasic media see Temkin 1990). Devin (1959) showed that the damping is 
due to the viscous dissipation a t  the liquidlgas boundary (avis), to the re-radiation 
of sound by the bubble (arad) and to the thermal diffusion in the gas (a,,). The source 
of this last effect is the polytropic behaviour of the gas, which generates a hysteresis 
effect between pressure and volume variation and thus damps the sound wave; in 
fact the gas behaves isothermally near the boundary because of the large specific heat 
of the liquid and almost adiabatically in the centre of the bubble, and it)s global 
behaviour is actually polytropic. The damping constant is the sum of the following 
three expressions : 

c$ = w/Re[ lc (w)] ,  a,, E Im [ k ( w ) ] .  (2.5) 

where we have introduced the viscosity of the liquid ,ul and the thermal diffusivity 
of the gas D, : the bubbles are supposed to be monodispersed since only one resonance 
pulsation, q., appears. The validity of (2.4) and (2.6) is well established 
experimentally for liquid/gas mixtures, at least at low frequency; a critical review 
of the various experimental works as well as a heuristic derivation of (2.4) are to be 
found in the review by Commander & Prosperetti (1989). 

The problem of thermal damping has been reconsidered recently by Prosperetti 
(1977, 1991) ; he gave an intricate analytical expression for S,, which is valid a t  any 
frequency and he showed that (2.6) is recoveed in the high-frequency limit. The 
natural timescale here is the characteristic heat diffusion time in the bubble, and the 
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high-frequency limit is reached when the dimensionless parameter R0(2w/D,)i 20. 
For a frequency about 10 Hz, we gett RO(2w/D,)i  z 7 .5  and the approximation (2.6) 
gives a slight overestimate of the thermal damping (see figure 2 of Prosperetti 1991). 

The resonance frequency of a 1 mm radius vapour bubble in diethyl-ether is 
w,/2n M 3.9 kHz, and for an acoustical frequency of 100 Hz the orders of magnitude 
of the various damping constants are 

a,, M 1.3 x M 6.2 x 

Thus the thermal damping is widely predominant but remains small; a good 
approximation of (2.4) a t  low frequency (i.e. much less than the bubble resonance 
frequency) is 

(2.7) 

where ceff is introduced with the help of (2.2). The latter expression is used in $4 to 
compute the predictions of the EMT. 

S,, M 6.2 x 

k: = (dceff)  r1 +i9&41> 

2.2. The modiJied effective-medium theory 
Consider a vapour bubble in (unstable) equilibrium with the surrounding liquid. 
Because of the sound wave, the pressure is no longer at its equilibrium value, and the 
bubble’s volume decreases or increases depending on whether some vapour is 
condensed or some liquid is vaporized. Therefore a vapour bubble changes its 
volume not only by the compression/dilatation of the vapour, but also because of the 
mass transfer between the two phases. Consequently the egective compressibility of 
the liquidlvapour mixture, and thus its acoustic properties, are different from that 
of the liquidlgas mixture. 

This new mechanism acts only a t  low frequency because the latent heat of 
vaporization must be provided to (or removed from) the interface by the surrounding 
liquid; it is clear that, at  least at  low volume fraction of gas, the liquid plays the role 
of a heat bath and that the kinetic of’the process is limited by the conduction of heat 
in the liquid. A typical time appears naturally; it  is dimensionally made up of the 
thermal diffusivity of the liquidD,, and the typical lengthscale of the system R,, and 
thus has order of magnitude - Ri/D,. The existence of this timescale makes the 
speed of sound dispersive, in contrast to ceff (see (2.1)). There is also an additional 
attenuation process because the diffusive process of heat transfer is necessary for the 
mass transfer to occur. 

A theory for the liquid/vapour mixtures has been given recently by Nakoriakov 
et al. (1984) and Onuki (1991) ; the expression of the propagation constant is found 
t o  be 

The characteristic time of diffusion over a bubble 7] = Ri/D,  appears here; the 
parameter m is given by 

m = 3723, p1 Cb T,/ G) (2.9) 
It expresses the thermal properties of the medium: L, is the latent heat of 
vaporization, To the equilibrium temperature and Cb the specific heat at constant 
pressure of the liquid. The physical meaning of m can be shown by rewriting it in a 

t We estimate the thermal diffusivity of the vapour, D,, with the help of the well known formula 
(P,D,)lPu, 1. 
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different way. If we assume the liquid/vapour interface to be in thermodynamic 
equilibrium, the Clapeyron-Clausius condition T,/(p, Lv) = (dT/dp)eq is satisfied ; we 
also assume that the vapour behaves adiabatically, so that dpldp, = yp,/pg, and we 
obtain 

1 
m = 3plC’,dT- 

(-“-J ’V dp, 
Q1 4J 

Qg 

Thus, we see that m is the ratio of the heat Q1 stored by the liquid which undergoes 
a temperature variation d T  to the heat Qg necessary to the phase transition. If Q1 is 
larger thn Qg, m is large and the speed of sound is much lower than ceff; this 
corresponds to  the fact that if the liquid stores heat well the vaporization is easier 
and the effective compressibility of the medium larger, in agreement with the simple 
physical picture. 

It is important to discuss the range of validity of (2.8). First we note that the 
frequency is supposed to be much lower than the resonance frequency of the bubbles, 
(2.3); indeed it has been shown by Nakoriakov et al. (1984) that near the resonance 
frequency (2.3) a liquid/vapour mixture behaves like a liquid/gas one to a very good 
approximation : a t  such a frequency the pressure variations are too fast to allow heat 
transfers between the two phases. It is thus consistent that the high-frequency limit 
of (2.8) gives ceff as the sound velocity, but one has to  keep in mind that this ‘high- 
frequency limit’ is actually an intermediate one, much higher than the typical 
thermal frequency but much lower than the bubble resonance frequency. 

In the limit of very low frequencies (in a sense to be made precise later), (2.8) gives 
rather unphysical results : taking the limit o --f 0 gives cB = 0. At zero frequency the 
mixture is in thermal equilibrium and one must recover the result obtained by 
Landau & Lifshitz (1959) : they found a null attenuation, and a phase velocity ceq 
which is much smaller than ceff. Onuki (1991) showed that a t  low frequency the 
temperature field around each bubble extends too far (with respect to the mean 
bubble distance), so that it is impossible to neglect thermal interactions between the 
bubbles, as it is explicitly done to obtain (2.8); Onuki gives an analytic expression 
for the complex constant of propagation which is valid in all the frequency range of 
interest : 

(2.10) 

In the zero-frequency limit, one recovers ceqfor the phase velocity, and the 
asymptotic behaviour of the attenuation is 

(2.11) 

which respects the physical requirement of null attenuation at null frequency. The 
same result have been obtained by Bogusslavski (1978) for an exactly solvable one- 
dimensional model, the proportionality constant being of course different (and the 
radius R, being replaced by the thickness of the vapour layer). 

The most interesting feature of (2.10) is that  it predicts a resonant attenuation of 
sound waves at a very low frequency, depending on 71 but also on the volume fraction 
f (see figure 2 b  of Onuki’s paper). This reflects the fact that  when the frequency goes 
to zero the bubbles are thermally in interaction: the typical time for heat diffusion 
is no longer 71 = R;/D, but rather r; = P/D1 where 1 is the mean distance between the 
bubbles. A rough estimate of r; is easy to obtain. Let n be the number of bubbles 
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(supposed all of radius R,) per unit volume. We have f = &cR; n so that n cc f/Rg : now 
the mean distance between the bubbles is 1 K nf OC R, f-i and we obtain 

T; cc R;/(fal)  = TJff. (2.12) 
The inverse of this time gives an estimate of  the resonant absorption frequency, in 
agreement with the exact value given by (2.10): for volume fractions of 0.15, 0.05 
and 0.005 the attenuation is maximum a t  a frequency 1/(27m1), 0.1/(2m,) and 
0.01/(2n7,) respectively (the values are taken from figure 2 b  of Onuki's paper), while 
our estimate gives 0.3/(2m1),  0.14/(2m1) and O.O3/(2m,) respectively. 

2.3.  Experimental test 
I n  order to observe significant effects due to mass transfer between the liquid and its 
vapour i t  is necessary to work a t  sufficiently low frequency, typically a few tens of 
Hz. I n  an  earlier study (Coste et al. 1990) we never used a sound wave of frequency 
below 250 Hz and were unable to see any discrepancy between our experiments and 
the EMT. The addition of a Helmholtz resonator a t  the end of our standing wave 
apparatus (see below for further details of the experimental facilities) allows us to 
lower the frequency down to 2 Hz, and to discriminate between the behaviours 
predicted by (2.7) and (2.8). 

On the other hand, the bubble radius R, is of order 1 mm, the typical diffusion time 
T~ of order 10 s and the volume fraction is about in our experiments; the 
frequency of resonant attenuation predicted by Onuki (1991) is extremely low in 
those conditions, typically a few mHz (see figure 2 of Onuki's paper, or the order of 
magnitude given by (2.12)). Thus, we did not observe this regime, nor the 
equilibrium phase velocity ceq. 

3. Experimental procedures 
3.1. Experimental set-up 

The experimental set-up is shown in figure 1. It consists of a set of two coaxial glass 
tubes terminated by a Helmholtz resonator. The total length of the tubes is 2 m, the 
inner tube is 20 mm I D  and the outer one 32 mm ID. The resonator is a cylinder 
made of 5 mm thick Pyrex, its height is 295 mm and its diameter 150 mm so that its 
volume is approximately 5 1; the copper part which joins the resonator to the tube 
is hollow and 5 mm thick. I n  the space between the tubes there are two independent 
circulations of water, for thermal regulation: the temperature of the upper part of 
the tube is held constant a t  5 "C, that  of the lower part a t  15 "C (k0.1 "C); note also 
that the resonator is held at the same temperature as the lower part of the tube : there 
is a circulation of water in the bigger tank in which the resonator is contained and 
in the hollow piece of copper. 

The working liquid is diethyl-ether and is contained in the inner tube. Bubbles of 
vapour are produced in the lower part of the tube with the help of four resisting 
wires; these 50 cm long wires of total resistance ill2 are heated by the current 
produced by a stabilized d.c. power supply; the experiments are carried with heating 
intensities in the range M A ,  Bubbles appear on the wires, then rise in the liquid; 
since the temperature of the upper part of the tube is much lower than diethyl-ether 
boiling point (34 "C), they condensate very rapidly after. leaving the heated part of 
the tube. 

Acoustic waves are generated by a piston held on a electromechanical vibration 
exciter a t  the top of the tube and they are detected by two piezoelectrical 
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Brass 

Copper 

Thermal regulation no. 1 = 
(water a t  5 "C) 

Thermal regulation no. 2 hy I I 
(water a t  

Diethyl-ether 

FIGURE 1. Sketch of the experimental apparatus; (1) electromechanical vibration exciter, (2) 
piezoelectric accelerometer, (3) outer Pyrex tube, (4) inner Pyrex tube, (5)  piezoelectric 
hydrophones, (6) heating wires, ( 7 )  Helmholtz resonator. 

transducers: one is located at the bottom of t.he tube, at the junction with the 
resonator, and the other one is 585 mm higher. A minature piezoelectrical accelero- 
meter is also fixed on the piston in order to compare its mechanical response to  
the electrical excitation. 
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FIGURE 2. Plot of the speed of sound from pulse flight time measurements versus the heating 
current. This plot serves to determine the intensity I ,  a t  which bubbling begins, as indicated by the 
vertical line on the figure. The speed of sound is always a decreasing function of the heating current 
because the mean temperature of the lower part of the tube increases; this is the change of slope 
which gives the value of I,,, 1.2A in our experiments. 

Two kind of measurements are made, both with low-amplitude pressure 
perturbations. First the vibration exciter is driven by one-period sine pulses, and the 
velocity is determined by the Aight time between the two detectors. Then we study 
the standing-wave behaviour of the tube. A first method is to store the pressure 
signal given by the two transducers on an IBM PC, for frequency excitations which 
are separated by 0.1 Hz steps and range mostly from 2 to 300 Hz. A one minute's 
averaging is performed for each measurement. Another approach is to study the 
frequency response of the system with the help of a spectrum analyser; either we 
supply the vibration exciter with white noise, or we use the fact that the surrounding 
noise is enough to excite the lowest resonances of the tube. 

3.2. Measurements of the volume fruction of vupour 
The mean volume fraction is determined by the change in the height of the liquid 
column when bubbling begins. To this end we use a cathetometer to mark the upper 
level of liquid; the precision is about 0.05 mm. Of course we have to take into account 
the dilatation due to the heating current; since a phase transition takes place a t  
constant temperature we assume that, after the first bubble has appeared for a given 
value I ,  of the heating current, the changes in height for I > I ,  are only dne to the 
increasing volume of vapour. To determine I,, the easiest and most precise way is to  
plot the velocity given by the flight time measurements versus the intensity; this is 
done in figure 2, so that we get the abscissa I ,  corresponding to the zero volume 
fraction. The volume fraction is then deduced from the fact that its value is equal to  
zero for I = I,. Such measurements are not very precise because a great importance 
is given to the points a t  low intensity, for which the changes in height are the most 
difficult to measure. 

However we have verified the values off by comparison between the predictions 
of EMT and the velocity of sound given by the measurements of the flight times of 
the pulses; the results are shown on figure 3. The duration of the pulses is about 
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1 I I I 
0 0.001 1.002 0.003 0.004 

Volume fraction 
FIGURE 3. Plot of the speed of sound from pulsc flight time measurements versus the volume 

fraction (points) and comparison with the prediction of the EMT (solid line). 

lOp3s, too short a time for effects due to the liquid/vapour transition to  be 
important, and thus the sound velocity should be given by (2.1). Actually the 
experimental points are very close to the theoretical values, which confirms the 
measurements off. I n  fact, according to (2.8), the volume fraction enters the MEMT 
only through the coefficient ceff. Subsequently, we use directly the experimental 
values of ceff in equations (2.7) and (2.8) for the calculations in $4. 

A limitation of our experiments is that  we have no statistical information on the 
bubble population. On one hand, from a purely experimental point of view it is 
difficult to use optical methods (e.g. macrophotography) because there are two 
different fluids separated by two solid cylindrical walls. On the othcr hand, local 
photographs are of little interest because a bubble of vapour is never a t  equilibrium 
and its radius R,  evolves during the ascension. We thus analyse our data (see $4) with 
R,, taken as a parameter and treat the mixture as if it were monodisperse; we discuss 
this point a t  length in $5 below and we give arguments which explain why the 
polydispersity has no dramatic effect. 

3.3. Xtanding-wave behaviour in a tube 
Consider an enclosed mechanical system, the input to which are waves generated by 
an appropriate vibration exciter. If the excitation force is P = F,elwt the input 
mechanical impedance Z,, is defined by Z,, = F / u ,  where u, is the speed at  the 
application point of the force. I n  the absence of damping Z,, is pure imaginary ; since 
the force is finite, when Z,, = 0 the speed u, is infinite this is the condition of 
mechanical resonance. The generalization to  the dissipative case is not difficult (see 
e.g. Kinsler et al. 1982, p. 66) and a resonance of the system is defined by the fact that 
the imaginary part of the input impedance is zero. 

We use this definition to calculate the resonance frequency of our system. We take 
the following model: we divide the tube in two parts (see figure 1 ) ,  the upper one 
(part 1 ) between abcissa x = 0 and x = 1 contains the pure liquid at  a temperature of 
5 Y;, the lower one (part 2) between x = 1 and x = L contains the diphasic mixture 
and is ended by the terminal impedance 2,. Of course this is an idealization because 
the boundary between the two fluids has actually a finite length, but an estimate of 
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this length is easily obtained, showing that it is negligible compared to the other 
relevant lengths of the problem. The collapse of a vapour bubble is a difficult problem 
(see e.g. Plesset & Prosperetti 1977) but a vapour bubble of radius 1 mm is 
sufficiently big for its growth to be described by the asymptotic formula of Plesset 
& Zwick (1.954): R(t) = R,+C,ti, where C, = 2h1(T,,-T,)/(Lp,D,). This formula can 
be applied to the beginning of the collapse, but not to the later stage, when the size 
of the bubble becomes smaller than the typical length of heat diffusion in the liquid; 
but we may suppose that it gives an upper limit of the collapse time Atc, that is 
Atc M Rt/Ci .  On the other hand, under the action of buoyancy and viscous forces, the 
bubble has a limit speed v given by:  v = C,R2(t) where C,  E p1g/(3pl), g being the 
acceleration due to gravity. Making the rather crude assumption that during the 
collapse the bubble has a speed always equal to its limit value, we get the following 
estimate for the length 1, on which the collapse takes place: 

The temperature of the upper part of the tube is 5 "C so that Eb - M 29 "C and we 
thus obtain I ,  M 4 mm; this length is much smaller than the wavelength and the 
length of each part of the tube, thus justifying the assumption of discontinuous 
properties of the fluid a t  the junction between the two parts of the tube. 

We also neglect all dissipative effects due to viscous damping and to heat 
exchanges between the fluid and the walls. Those phenomena are well known and the 
expression for the attenuation is (see e.g., Morse & Ingard 1986, p. 519) 

where a is the radius of the tube and c the speed of sound in the fluid. For a frequency 
w/2n = 100 Hz, a bubble radius R, = 1 mm and an effective velocity ceff = 200 m/s, 
numerical estimations using (3.1), in the case of the pure fluid and (2.6) and (2.5) for 
the two models of liquid/vapour mixtures give the following values for the 
attenuation : 

x 9 x lop4 m-l, 
a$ M 9 x lop2 m-l, 
a$ M 1 m-l, MEMT. 

pure fluid, 
EMT, 

Thus the attenuation in the part of the tube filled with pure fluid, due to viscous 
damping and heat exchange at the walls, is much smaller than the attenuation 
predicted either by the MEMT or the EMT without taking the walls into account. 
Note also that even a t  a relatively high frequency (compared to  the timescale of the 
condensation/vaporization process) the MEMT predicts an attenuation much higher 
than the one given by the EMT. 

We define the acoustic pressure in each part of the tube by 

p,(x) = A ,  e-ikiZ+B1 e+ikis; pz(x) = A ,  e-ifzZ+B, e+ 'b ,  (3.2) 
where we drop the factor eiWt and x is the distance from the tube input ; the notation 
E ,  expresses the complex nature of the constant of propagation in part 2 of the tube, 
whereas dissipation is neglected in part 1,  so that 12, is real. Let pi and ci respectively 
denote the density and the speed of sound in the part i of the tube, and S the area 
of its section. 
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At ariy point x the mechanical impedance is Sp(x ) /u (x )  and is obtained in a very 
simple way from (3.2) together with the formula u(x ,  t )  = - (l/p,) f (ap/ax)  dt. The 
continuity of the acoustic pressure and of the normal velocity at the junction 
between the two parts of the tube and a t  the entrance of the Helmholtz resonator is 
thus most easily expressed by the continuity of the complex mechanical impedance. 

The continuity of the mechanical impedance a t  x = L gives the following equation : 

and the continuity of the acoustic impedance a t  the junction between the two parts 
of the tube, at x = 1, is expressed by 

Lastly, the condition of resonance may be written: 

(3.4) 

(3.5) 

where Im (C) stands for the imaginary part of the complex number C. One should 
remark that in this last equation, the mechanical impedance of the vibration exciter 
is neglected; this approximation is justified by our experiments when the tube is 
filled with pure fluid (that is, no heating and thus no bubbles). The measurements are 
reported in Coste (1991). Equations (3.3), (3.4) and (3.5) allow the numerical 
calculation of the resonances but i t  is convenient to rewrite them. 

We define t by f ,  = (w/cefl) t ;  t is a corrective factor to  the simplest version of the 
EMT (see (2 .1))  and its expression is given by (2.7) when the bubbly liquid is 
described by the EMT and (2.8) when it is described by the MEMT. For diethyl-ether 
under. the experimental conditions given in $3.1 i t  is 

t =  ( 1+--?+i7 iO7: 0.iG): (MEMT), R, vz 
(3.6a) 

(3.6b) 

where v is the frequency in Hz and R, the radius of the bubbles (for a monodisperse 
population) in mm. We also define the dimensionless impedance z and zL  by 

(3.7) 

z L  is the dimensionless terminal impedance; the tube is terminated by a Helmhotz 
resonator, a very simple acoustical system consisting of a neck connected to a cavity. 
This set behaves like a harmonic oscillator if each of its dimension is much less than 
the wavelength: the mass element is provided by the fluid contained in the neck, 
whereas the stiffness element is related to  the compressibility of the fluid in the 
cavity (see e.g. Kinsler et al. 1982, p. 2 2 5 ) ;  it is used here to lower the resonance 
frequency of the tube. The functional form of x L  is that  of an harmonic oscillator, i.e. 
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zL = i(a, V-PJV)  ; the inductive (a, = 2.45 x lo-’) and capacitive (PL = 4.38) terms 
are calculated elsewhere and are consistent with precise measurements when the tube 
is filled only with liquid (Coste 1991). 

Lastly, we introduce a coefficient Y by 

B, = YA,. (3.8) 
With those definitions, the system of equations which gives the resonance frequencies 
of the tube has the following form : 

(3.9) I p c R = l ? e f f  
p1 tc, (z+ 1 )  e1kdL-l) - (2- 1)  e-IL,(L-l) ’ 

( z  + 1) e&(L-l) + ( z  - 1) e-Iiz(L-2) 

y =  e-21k 1 R - l / ( R S l ) ,  

Im(Y) = 0. 

The numerical resolution of this system allows the calculation of the resonance 
frequencies of the tube for the two models. 

The resonance frequency is not the only relevant information given by an 
experimentai resonance curve ; the maximum pressure amplitude or the width of the 
curve are also easily measured and are not given by (3.9). Moreover, as will be shown 
in $4.3, there exist maxima of the pressure which are not ‘true’ resonances, that is 
which do not correspond to the annulation of the imaginary part of the input 
impedance. I n  order to compare such information with the calculations, we also need 
an expression for the pressure at a given point of the tube as a function of the 
frequency. It is straightforward to obtain from ( 3 . 2 )  and (3.8) the pressure amplitude 
P, (u )  a t  the distance 1 from the tube input, where the upper detector is located: 

e-ik, 1 + y eik, 1 I 1 + Y  = Po (3.10) 

where Po is the pressure at  the tube input and ICI stands for the modulus of the 
complex number C. 

4. Results 
Our apparatus does not allow direct measurements of the attenuation and the 

phase velocity versus the frequency of the sound wave. We study the response of the 
apparatus as a function of the frequency of the input excitation, and how it evolves 
with the volume fraction of vapour. It depends directly on the attenuation and phase 
velocity of the wave in the bubbly part of the tube, and the results of the preceeding 
section allow direct comparison between the experimental features of the resonance 
curves and their theoretical values. We study the positions of the two first resonances 
of the tube (see $54.1 and 4.2 below), which are related to both the attenuation and 
phase velocity of the wave, the width of the first resonance (see $4.2) and the relative 
amplitude of the two resonances (see 54.4), these last properties depending mostly on 
the attenuation. 

4.1. Position of the f irst resonance 
The evolution of the first resonance with the volume fractionf is displayed in figure 
4;  it shows some very intuitive features: the resonance frequency becomes lower 
when f increases, which indicates that the speed of sound is a decreasing function of 
f, and there is also a regular widening of the curves accounting for the increase of the 



0.
04

 

0.
03

- 

0.
02

--
 

0.
01

4 2 
4 

6 
8 

10
 

12
 

14
 

16
 

--
 

0.
08

 -
 

0.
06

 --
 

0.
04

 --
 

0.
02

 --
 

FI
G

U
R

E
 

4.
 E

xp
er

im
en

ta
l 

re
so

na
nc

e 
cu

rv
es

 f
or

 t
he

 f
ir

st
 r

es
on

an
ce

 (
th

e 
fu

nd
am

en
ta

l 
fr

eq
ue

nc
y)

 o
f 

th
e 

tu
be

; t
he

 o
rd

in
at

e 
is

 th
e 

am
pl

itu
de

 o
f t

he
 p

re
ss

ur
e 

si
gn

al
 in

 a
rb

it
ra

ry
 u

ni
ts

 a
nd

 th
e 

ab
ci

ss
a 

is
 th

e 
fr

eq
ue

nc
y 

in
 H

z.
 E

ac
h 

pa
rt

 (a
-f

) i
s a

 s
er

ie
s o

f c
ur

ve
s w

ith
 

th
e 

sa
m

e 
pe

ak
/p

ea
k 

vo
lta

ge
 a

m
pl

itu
de

 o
n 

th
e 

vi
br

at
io

n 
ex

ci
te

r;
 if

 t
he

 a
m

pl
it

ud
e 

of
 s

er
ie

s 
(a

) is
 ta

ke
n 
as
 u

ni
ty

, t
he

 a
m

pl
itu

de
 is

 
1 

fo
r 

(b
),

 2 
fo

r 
(c

) a
nd

 (
d)

, 3
 fo

r 
(e

) a
nd

 4
 fo

r 
se

rie
s 

(f
).

 T
he

 v
ol

um
e 

fr
ac

tio
ns

f 
fo

r 
ea

ch
 c

ur
ve

 a
re

 a
s 

fo
llo

w
s:

 (
a)

 0,
 2

.4
 x 

an
d 

1.
1 

x 
(b

) 2
.0

 x 
2.

7 
x 

4
.0

~
 

an
d 

5.
7 

x 
lo

e4
; (c

) 6
.

8
~

 
lo

-*
, 9

.2
 x 

an
d 

1.
2 x

 
(d

) 1
.4

 x 
1.

6 x
 

an
d 

1.
9 x

 
(e

) 2
.1

 x 
2.

2 x
 

an
d 

2.
4 x

 
(f

) 
2.

6 x
 

an
d 

3.
1 

x 
T

he
 re

so
na

nc
e 

fr
eq

ue
nc

y 
de

cr
ea

se
s w

ith
 th

e 
vo

lu
m

e 
fr

ac
tio

n.
 

00
 

0
 

?
 

9
 



Acoustic behaviour of a liquidlvapour mixture 81 

damping. For a quantitative study one must use (3.9) and compare the prediction of 
EMT and MEMT to the measurements; the evolution of the positions of the 
resonance frequencies is studied in this subsection, whereas the next subsection is 
concerned with the evolution of the width of the curves. 

The radius of the bubbles is taken to be 1 mm. This value is consistent with direct 
observation but is necessarily an approximation of the actual distribution; a full 
discussion is presented in $ 5 .  The result of the comparison is displayed in figure 5 .  
The discrepancy between the experimental values and the predictions of EMT is 
clear (100 % for the lowest frequency). As the value taken for the radius of the 
bubbles is certainly an upper limit, the frequencies are sure to  be much lower than 
the lowest resonance frequency (3.9 kHz for a diethyl-ether bubble with a radius 
R, = 1 mm) and the volume fraction is in our experiments always less than 0.4% : 
under such experimental conditions it is known that the EMT correctly describes the 
behaviour of liquidjgas mixtures?. As a first result we experimentally demonstrate 
that the EMT is unable to account for the behaviour of liquid/vapour mixtures. 

On the other hand, the predictions of MEMT are in good quantitative agreement 
with the experimental values; even in the part of the curve where the agreement 
seems poor, i.e., for f from 0.1 % to 0.15 % the discrepancy is always less than 10%. 

4.2. Width of the Jirst resonance 
The position of the first resonance of the tube depends both on the phase velocity of 
the sound wave and on the attenuation. On the other hand, the width of the 
resonance curve depends only on the damping, that is on the attenuation of the 
wave: if the wave is not attenuated, there is no damping and only infinitely fine 
resonances of infinite amplitude. The comparison between the experimental width of 
the first resonance and the calculated one obtained from the EMT and the MEMT 
gives indications of the validity of the attenuation predicted by the respective 
models. 

We measure the width of each curve at half-amplitude; in order t o  get the 

t Silberman (1957) reports measurements a t  frequencies down to a few tens of Hz. 
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8 

Volume fraction 
FIGURE 6. Evolution of the width of the first resonance with the volume fraction. A comparison is 
made between the experimental values (O), the predictions of EMT (A) and those of the MEMT 
( x ). 

predictions of the two models, we use (3.10) and (3.9) with ( 3 . 6 ~ )  or (3 .6b) .  We 
calculate numerically the maximum amplitude of the pressure, Pm,, and use this 
value to determine the width as t#he difference between the two numerical solutions 
of the equation <(Y) = +Pmax. 

The result of the comparison is shown on figure 6. On one hand, one sees that the 
predictions of the EMT do not agree with the measurements, even in order of 
magnitude as was the case for the position of the resonance: the greatest width 
predicted by the EMT is 0.5 Hz whereas the actual one is 5.6 Hz. This shows that the 
main failure of the EMT rests in the attenuation, which is underevaluated; the 
phenomenon responsible for sound attenuation is the dissipative transport in the 
liquid of the latent heat due to phase transition a t  the interface, rather than the 
damping of tJhe bubble oscillations by the viscosity of the liquid and the thermal 
processes in the gas. On the other hand, the predictions of the MEMT agree quite well 
with the experimental values, showing that the dissipative phenomenon is correctly 
taken into account by this model. 

4.3. Position of the second resonance 
In  principle, (3.9) gives the position of the highcr resonances of the tube. We use to 
calculate the second resonance frequency for both the EMT and MEMT; the 
predictions of the EMT are displayed on figure 8 below and show a clear discrepancy 
with the observations. 

When the calculations are done with the expression for t given by the MEMT, 
(3.6a),  we find no resonance at all, i.e. the imaginary part of the input impedance is 
never zero, for any frequency in the range of interest. This result seems disappointing, 
but, one should remember that there might be a local maximum in the plot of the 
pressure versus the frequency, without any actual resonance of the tube (i.e. in the 
sense corresponding to the definition of 53). We cannot employ (3.9) anymore and we 
have to use (3.10) to plot the calculated resonance curve and to  compare it to the 
experimental one. 

In  figure 7 (a )  we show an experimental curve e ( v ) ;  the pressure a t  point z = I is 
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FIGURE 7 .  (a)  A plot of the first two experimental resonances from measurements with a spectrum 
analyser ; i t  is a power spectrum and the ordinate units are dBVrms. The spectrum is obtained after 
47 averages. ( b )  As (a)  but calculated with the MEMT. The structure is very reminiscent of that of 
the experimental plot; note also that the minimum of the curve is much deeper than the 'actual' 
one, since the contribution of other sources of damping that we have neglerted becomes 
predominant. (c) As (a )  but calculated with the EMT. The discrepancy with the experimental curve 
is obvious; note also that the resonances are sharper than they look, because of the numerical 
resolution. The first peak is calculated a t  z -40 dB and the second one at z - 77 dB. 
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0 2 4 6 ( x  10.') 8 

Volume fraction 
FIGURE 8. Evolution of the second resonance frequency with the volume fraction. The comparison 
is made between the experimental values (O), the predictions of EMT (A) from (3.9) and those of 
the MEMT ( x ) from numerical determination of the second maximum ofP(v), according to  (3.10). 

measured with the upper pressure transducer (see figure 1). The obvious feature of 
this curve is the broadening of the second resonance ; its width is about 30 Hz for a 
resonance frequency of 80 Hz whereas the width of the first peak is 1.7 Hz for a 
resonance frequency of 15.5 Hz. This is a strong indication that the two resonances 
do not correspond to the same physical effect. The theoretical curve calculated with 
the MEMT is displayed on figure 7 ( b ) ,  and the curve given by the EMT on figure 7 (c ) .  
The analogy of structure between the experimental curve and the theoretical one 
obtained with the MEMT is striking: the second peak has a much lower amplitude 
and undergoes a considerable widening, both experimentally and in the calculations 
based on the MEMT. Thus the MEMT does predict a peak in the curve p2(v), but this 
peak does not correspond to an actual resonance of the tube. 

I n  fact, the attenuation is too high for the second resonance to exist, and 
experimentally the only memory of the latter is a very wide peak; the MEMT 
succeeds very well in predicting that the imaginary part of the input impedance does 
not vanish anymore, i.e. there is no actual resonance, but that  in place of it there 
appears a wide peak in the curve c(v). On the other hand, the attenuation given by 
the EMT is too low to make the resonance disappear, and there is clearly a 
discrepancy between the form of the resonance curve and the experimental one. We 
emphasize the fact that  the two models differ not only in numerical predictions, but 
also on the very structure of the resonance curve. Note also that this fact, is 
consistent with the previous results on the width of the first resonance, which also 
show that the EMT underestimates the attenuation of the wave. 

To calculate the predictions of the MEMT for the position of the second 
' resonance ' we calculate the second maximum of the curve &( u )  numerically because 
(3.9) is not verified. This method gives the results displayed in figure 8, which are in 
very good agreement with the observations. 

4.4. Amplitude of the resonances 
Our apparatus does not allow us to  measure the pressure a t  the input of the tube, and 
the geometry of the piston makes difficult to deduce it from its acceleration. On the 
other hand the difference between the amplitudes of the first peak and of the second 
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FIGURE 9. Evolution of the difference of amplitude between the two first peaks in the curve c(v), 
in dBrms, with the volume fraction. The comparison is made between the experimental values (0) 
and those of the MEMT ( x ). 

one is easily accessible both experimentally and numerically, since the input pressure 
does not appear anymore. It is an interesting quantity related to the attenuation 
part of the propagation constant ; the result of the comparison is shown in figure 9. 
Calculations are made only with the MEMT and show reasonable agreement with the 
experimental values. As the EMT fails to predict the positions of the resonances, we 
do not calculate the corresponding amplitudes; in fact the attenuation is so 
underevaluated that the first peak is much too sharp and high. In  the case of figure 
7, that is a t  f M 2.7 x the measured difference between the two amplitudes in 
dBvrms is 17.5 dB, the prediction of EMT is 38.3 dB and that of MEMT is 18 dB. 

5. Discussion 
The results presented in the preceeding section establish without any doubt that 

the EMT is unable to describe the behaviour of a liquid/vapour mixture at low 
frequency and low volume fraction of vapour. The discrepancy between the EMT 
and the experiments for the quantities which depend almost only on the attenuation 
(the width of the first resonance curve in $4.2, the ratio of amplitude of the two first 
peaks in $4.4 and the structure of the second peak in 54.3) establishes that the main 
failure of this model consists in the underestimation of the dissipative phenomena 
causing the attenuation of the wave. Moreover, since the positions of the resonances 
do not agree with the experimental values, the phase velocity given by the EMT is 
probably incorrect also. This conclusion is a new experimental result showing the 
specific character of liquid/vapour mixtures. Note also that the most important 
limitation of our experiments, that is the lack of statistical knowledge of the bubble 
population, is without consequence because the only relevant parameter of the EMT 
is the volumic fraction of vapour, a global? quantity. 

On the other hand, we give evidence that the MEMT does agree with our 
experiments : it gives with a good precision how the first resonance of the tube varies 

t In fact, as is clear from (2.7),  the imaginary part of the propagation constant depends 
explicitly on the mean bubble radius R, and is thus sensitive to polydispersity. However, the 
polydispersity is unable to explain discrepancies of several orders of magnitude. 
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with the volume fraction. The width of the first resonance is also well predicted by 
the MEMT. It indicates that the dissipative phenomenon of concern in liquid/vapour 
mixtures is correctly taken into account by the MEMT. Thirdly the MEMT displays 
the actually observed disappearance of the second resonance of the tube. only a 
broad peak remains, and the value ofthe peak frequency as well as the structure of 
the resonance curve are in good agreement with the observations. Finally, it predicts 
a ratio of the amplitudes of the first two peaks of the Pi(,) curve which is very close 
to the actually observed one. 

Kevertheless. there remains the experimental problem of the polydispersity of the 
bubble population. All our calculations are made with a monodisperse population of 
bubbles having a typical radius equal? to  1 mm. This value is consistent with visual 
observation, an argument which may seen extremely doubtful but which is 
strengthened by the fact that  we use a unique parameter to analyse data which are 
of different types and in different frequency domains. Moreover we know that the 
radius of a bubble going away from a solid wall under the action of buoyancy forces 
(see e.g. Bikerman 1973, p. 54) is 

Ro - [fl/9(Pl -P,)ltj 
where CT is the surface tension and g the gravitational acceleration; this gives 
R,  w 1.5 mm. This is of course only an order of magnitude, and the radius ofa bubble 
leaving a capillary or a wall is still a difficult open problem, but i t  is nice to recover 
the same order of magnitude as the one that we observed. 

Another question to  ask is whether the theory itself should be independent of the 
polydispersity, despite the explicit presence of the bubble radius in the final formula. 
We investigate this possibility in a very simple way' we take a bidisperse population, 
with ns), bubbles with radius Rl, and maintain the volume fraction of vapour fixed, 
so that 

(5.1) 
We take €2, < R, = R,, because we expect R, to play the part of an upper limit for 
the bubble radius; in practice we discuss results with R? = aR, and R,  = +&. Let 
y , ,  = fl,,$nR!,,; at  small volumic fraction f w &/q  and we define x as 

y/q = xf; v,/q f (1-x)f; (5 .2 )  
then x is the only adjustable parameter along with r = R,/R, ; x ranges from 0 (only 
big bubbles) to 1 (only small ones). The next step i s  the generalization of (2.8) for a 
polydisperse population of bubbles; it is very simple if one follows the calculations 
of Onuki (1991). The (complex) effective compressibility K,, reads 

(5.3) 

where p is the averaged density and m is the parameter defined in (2.9). (1 -@>, is 
the average over the disorder of the dimensionless temperature field O,,  on the liquid 
side. I n  the frequency range of intei-est, the temperature field around each bubble is 
independent of the other bubbles and the average is taken without any dificulty. 
The expression for 0, is (see equation 2.35 b of the paper by Onuki 1991, where 0 is 
denoted F )  

l -O,(u)  = _iprp[(g$(BI-.)] R .  
U 

(5.4) 

t It may be considered as a parameter whose value is obtained by fitting the experimental 
results with the predictions of the MEMT; the precision is about 10%. 
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FIGURE 10. Plot of the dirnensionless phase velocity [1/Re (F)] and attenuation [Im ($1 versus the 
frequency for a mixture of bubbles with radii (a) R, = 1 mm andR, = 0.5 mm, and (b )  R, = 1 mm 
and R, = 0.1 mm. 

where u is the radial coordinate, with the origin taken at the centre of the bubble. 
Then we get 

3 f [ % ( l + & ) + ( l - x ) ~ - ~  ( i w #  (iwrl)s ( l W T 1 ) ~  ' I  , ( 5 . 5 )  

where we have used r, = Ri /D , ;  we have also kept the term proportional to  I/" 
because it cannot be neglected for. small bubble radius (e.g. for r = 10; note that this 
term is neglected in (2 .8) ,  which is legitimated by the value of RJ. We thus get the 
corrected expression for the propagation constant : 

+ ixr2 - 1 + [l +x(r-  l ) ]  (1 +i)  - 'm 

(2W7,)Z "71 
(5.6) 

The term that is the factor of (w/ceff)  on the right-hand side is hereafter noted t" 
because it is a generalization of the term t defined in (3.6). We can study the evolution 
of the dimensionless phase velocity l/Re(t") and of the attenuation Im(f) when x 
varies, for a given r .  The results are displayed in figure 10 for r = 2 (figure 10a) and 
r = 10 (figure l o b ) .  They differ by no more than a few percent even when there are 
as many small bubbles as big ones for r = 2 (x = i), and when the small bubbles are 
ten times as numerous (such a proportion should not escape even simple observation) 
as the big ones for r = 10 (x = 0.01). Thus the phase velocity and attenuation are not 
very sensitive to  the polydispersity: in fact, i t  seems that the mixture behaves as if 
the bubbles which contribute mostly to the volume fraction were alone. 
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On the other hand, as is clear from $4, our measurements are indirect 
determinations of both the phase velocity and the attenuation, and this causes a lack 
in sensitivity. Both this experimental limitation and the feature of the theory 
described above may explain why our measurements are in good agreement with the 
predictions of the MEMT, despite the polydispersity of the bubble population. 
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We also thank the referees for useful comments. 

R E F E R E N C E S  
ARDRON, K. H. & DUFFEY, R. B. 1978 Acoustic wave propagation in a flowing liquid-vapour 

BIKERMAN, J. J. 1973 Foams. Springer. 
BOGUSLAVSKI, Yu. YA. 1978 Absorption and dispersion of sound waves in two-phase medium. 

Sou. Phys. Acoust. 24, 24-27. 
BORISOV, A. A., BORISOV, AL. A,, KUTATELADZE, S. S. & NAKORIAKOV, V. E. 1983 Rarefaction 

shock wave near the critical liquid-vapour point. J .  Fluid Mech. 126, 59-73. 
CARTENSEN, E. I,. & FOLDY, L. L. 1947 Propagation of sound through a liquid containing 

bubbles. J .  Acoust. SOC. A m .  19, 481-501. 
COMMANDER, K. W. & PROSPERETTI, A. 1989 Linear pressure waves in bubbly liquids : comparison 

between theory and experiments. J .  Acoust. SOC. Am. 85, 732-746. 
COSTE, C. 1991 Propagation d'ondes acoustiques dans les mClanges diphasiques liquide/vapeur . 

PhI) thesis, Universith Claude Bernard, Lyon. 
COSTE, C., LAROCHE, C. & FAUVB, S. 1990 Sound propagation in a liquid with vapour bubbles. 

Europhys. Lett. 11, 343-347. 
DEVIN, C. 1959 Survey of thermal, radiation and viscous damping of pulsating air bubbles in 

water. J .  Acoust. Soc. A m .  31, 1654-1667. 
FELDMAN, C. I,., NYDICK, S. E. & KOKERNAK, R. I?. 1972 The speed of sound in single-component 

two-phase fluids : theoretica,l and experimental. Prog. Heat Mass Transfer 6, 671-684. 
FINCH, R. D. & NEPPIRAS, E. A. 1973 Vapor bubble dynamics. J .  Acoust. Soc. Am. 53,1402-1410. 
HSIEH, D. Y. 1979 On oscillation of vapor bubbles. J .  Acoust. SOC. Am. 66, 1514-1515. 
HSIEH, D. Y. 1982 Some aspects of dynamics of bubbly liquids. Appl. Sci. Res. 38, 305-312. 
KIEFFER, S. W. 1977 Sound speed in liquid-gas mixtures: water-air and water-steam. 

KINSLER, L. E., FREY, A. R., COPPENS, A. B. & SANDERS, J. V. 1982 Fundamentals of Acoustics. 

KOKERNAK, R. P. & FELDMAN, C. L. 1972 Velocity of sound in two-phase flow of R12. American 

KUTATELADZE, S .  S. ,  NAKORIAKOV, V. E. & BORISOV, A. A. 1987 Rarefaction waves in liquid and 

LANDAU, L. & LIFSHITZ, E. 1959 Sound waves. In  Fluid Mechanics, $64. Pergamon. 
MALLOCK, A. 1910 The damping of sound by frothy liquids. Proc. R. ~Yoc. Lond. A 84, 391-395. 
MARSTON, Y. L. 1979 Evaporation-condensation resonance frequency of oscillating vapor bubbles. 

MECREDY, R .  C. & HAMILTON, L. ?J. 1972 The effect of nonequilibrium heat, mass and momentum 

MICREDY, R. C., WIGDORTZ, J. M. & HAMILTON, L. J. 1970 Prediction and measurement of 

MINNAERT, M. 1933 On musical air bubbles and the sound of running water. Phil. Mag. XVI, 

MORSE, P. M. & INGARD, K. U. 1986 Theoretical Acoustics. Princeton University Press. 

mixture. Intl J .  Multiphase Flow 4, 303-322. 

J .  Geophys. Res. 82, 2895-2903. 

Wiley . 

Xociety of Heating, Refrigerating and Air  Conditioning Engineers J .  14, 35-38. 

gas-liquid media. Ann. Rev. Fluid Mech. 19, 577-600. 

J .  Acoust. Soc. Am. 66, 1515-1521. 

transfer on two-phase sound speed. Intl J .  Heat Mass Transfer 15, 61-72. 

acoustic wave propagation in two-phase media. Trans. Am. Nucl. SOC. 13, 672--~673. 

235-248. 



Acoustic behaviour of a liquidlvapour mixture 89 
NAKORIAKOV, V. E., POKUSAEV, B. G. & SCHREIBER, I. R. 1980 Pressure waves in a liquid with 

gas or vapour bubbles. In  Cavitation and Inhomogeneities (ed. W. Lauterborn), pp. 157-163. 
Springer. 

NAKORIAKOV, V. E., POKUSAEV, B. G., PRIBATURIN, N. A. & SCHREIBER, I. R. 1984 Acoustics of 
a liquid containing vapour bubbles. Sov. Phys. Acoust. 30, 480482.  

NIGMATULIN, R. I. 1991 Dynamics of MuZtiphase Media. Hemisphere. 
NIGMATULIN, R. I., KHABEEV, N. S. & ZUONG NGOK HAI 1988 Waves in liquids with vapour 

ONUKI, A. 1991 Sound propagation in phase-separating fluids. Phys. Rev. A 43, 6740-6755. 
PLESSET, M. S. & PROSPERETTI, A. 1977 Bubble dynamics and cavitation, Ann. Rev. Fluid Mech. 

PLESSET, M. S .  & ZWICK, S. A. 1954 The growth of vapor bubbles in superheated liquids. J .  Appl. 

PROSPERETTI, A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations 

PROSPERETTI, A. 1991 The thermal behaviour of oscillating gas bubbles. J .  Fluid Mech. 222, 

SILBERMAN, E. 1957 Sound velocity and attenuation in bubbly mixtures measured in standing 

TEMKIN, S. 1990 Attenuation and dispersion of sound in bubbly fluids via the Kramers-Kronig 

TRAMMEL, G. T. 1962 Sound waves in water containing vapour bubbles. J .  AppZ. Phys. 33, 

WANG, T. 1974 Effect of evaporation and diffusion on an oscillating bubble. Phys. Fluids 17, 

bubbles. J .  Fluid Mech. 186, 85-117. 

9, 145-185. 

Phys. 25, 493-500. 

of gas bubbles in liquids. J .  Acoust. Soc. A m .  61, 17-27. 

587-616. 

wave tubes. J .  Acoust. SOC. Am. 29, 925-933. 

relations. J .  Fluid Mech. 211, 61-72. 

1662-1670. 

1121-1126. 




